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Effects of Shear Flow and Viscosity Difference on 
Phase Separation I 

A.  O n u k i  2 

We discuss some salient features recently Ibund in phase-separating fluids under 
shear. They are highly elongated, bicontinuous domain structures Istring 
phase}, hysteresis in the droplet distribution in the off-critical case. existence 
of the spinodal due to suppression of droplet formation in shear, and critical 
rheology. We also examine the condition of bicontinuity and the eflective 
viscosity when the two phases have different viscosities. 
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1. I N T R O D U C T I O N  

Recently, effects of  shear on phase transitions have been extensively studied 
in various fluid systems. The effects are particularly marked in the following 
cases. (i) First studies were focused on fluids with slowly relaxing fluctua- 
tions such as near-critical fluids [ 1, 2 ]. They are deformed by shear within 
their thermal lifetimes. {ii) If shear is applied to phase-separating fluids, 
domains  grow and are eventually nonlinearly affected by shear, however 
small the shear rate is [ 3 - 9 ] .  The observed effects are very different 
in the two cases of spinodal decomposit ion [ 3 - 7 ]  and nucleation [8, 9].  
(ii) Fluids with long-range order such as colloidal suspensions have also 
been studied extensively. They can often form layered structures with two- 
dimensional order in shear [ 10]. (iv) Fluids with mesoscopic structures are 
also very sensitively affected by shear [11 ]. They are liquid crystals [ 12], 
surfactant systems [13] ,  block copolymers [14] ,  and electrorheological 
(or ferromagnetic) fluids [15] .  (v) Viscoelastic fluids such as entangled 
polymer solutions and blends behave like gels on relatively small spatial 
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scales or on relatively short time scales [ 16]. Their responses to shear are 
very unique and dramatic. An example of such effects is shear-induced 
phase separation [6, 17], which arises from a dynamical coupling between 
stress and diffusion [ 16]. That is, shear produces stress disequilibrium in 
the presence of the composition fluctuations because they sensitively give 
rise to heterogeneities of the viscosity: it then leads to relative motion 
between the two components. 

Most theoretical and experimental studies have thus treated near- 
critical fluids and a variety of complex fluids with large and/or complicated 
internal degrees of freedom. However, from the above criteria, interesting 
nonlinear effects of shear can also be expected in fluids near glass transi- 
tions, in which the relaxation of the density or composition fluctuations is 
extremely slow and viscoelasticity is apparent. Because this field is very 
diverse and still expanding, it is very difficult at present to write a paper 
reviewing all these aspects. In this paper, therefore, we review and com- 
ment on some recent findings in phase-separating fluids under shear in 
Section 2-5. In Section 6 we present a first theory of spinodal decomposi- 
tion when the two phases have different viscosities. 

2. S T R I N G  PHASE IN S H E A R  

We bring a fluid mixture into the unstable region with a stationary 
shear S held fixed. It is known that the spinodal decomposition is stopped 
by shear when the two mechanisms of thermodynamic instability and flow- 
induced deformation are balanced, giving rise to dynamical stationary 
states [4, 7]. When the composition is at the critical value, previous light 
scattering experiments have detected very strong anisotropy (streak 
patterns) in the scattering intensity even in weak shear, Sr ,~ 1, where r is 
the average relaxation time of the critical fluctuations [ 5, 7, 18 ]. Computer 
simulations have also shown strong deformations of bicontinuous domain 
structures just after quenching [19-21].  To investigate the ultimate 
bicontinuous morphology in shear. Hashimoto et al. have recently taken 
microscope pictures from a Newtonian ternary polymer solution under- 
going phase separation [22]. In their system the interaction between two 
species of polymers is much weakened by a common solvent, and the 
viscosity is quite high ( ~ 1 poise), though the entanglement effect is not yet 
severe [7].  As a result the time scale of phase separation is dramatically 
slowed down (r ~ 6 s) even if the quench depth is not small. They have 
found that domains are elongated into extremely long cylinders in steady 
states except for extremely weak shear. For Sr < 1 such stringlike domain 
structures still contain a number of random irregularities undergoing 
frequent breakup, interconnection, and branching, although the overall 
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structure is kept stationary. For S r > l  the continuity of the strings 
increases and extends even macroscopically in the flow direction while their 
diameter is less than 101Lm. This means that strong shear can suppress 
undulations of the interfaces, which would grow in the absence of shear. 
Finally, for very large shear S ( > 102 s), the diameter becomes of the order 
of the interface thickness, of the order of 500 A, and the contrast between 
the two phases vanishes, resulting in shear-induced homogenization. 

It seems to be a general aspect in any two-phase state that domains 
are much more elongated in shear in the bicontinuous case than in the 
droplet case in which only one phase is percolated. 

3. N U C L E A T I O N  I N  S H E A R  

Let us consider the situation in which the temperature T is slightly 
lowered below the coexistence temperature T~ by d T =  1"~ - T in the off  
critical case. To observe appreciable droplets of the phase, the critical 
droplet must not be torn by shear and hence we require R, < R*, where 
R ~ - ~ / J  is the critical radius and R * - a / q S  is the Taylor breakup size 
[3].  The ,'1 [ =el(0)]  is the initial supersaturation, much smaller than 1, 
and is related to dT and e lT= T ~ - T ~  by el '-~,(dT,/elTI near criticality. 
Then. a necessary condition of observing noticeable droplets [8]  is as 
follows: 

S t < e l  (1) 

This gives an upper limit of shear, S* - A/r, at each dT or a lower limit of 
the quench depth, d T * - S r ( A T ) . - ~  S ( A T )  ~ -3,., at each S in order to 
trigger nucleation. This simple criterion has been confirmed in binary 
mixtures under stirring [24] and uniform shear [ 9]. Let d T,D--O.  15,:/T be 
the classical Becker-D6ring limit. Then dT*  > d T , , )  close to the critical 
point and dT* < dT~w relatively far fi'om the critical point. It is clear that 
d T  must exceed dT~3D for growth of droplets in realistic observation times 
if there are no stable droplets ( R > R ~ )  at the initial condition. On the 
other hand, if a T  is decreased from a value larger than both dT* and 
dT.~), droplets preexist and are broken at d T = d T *  from Eq. l1 I. 

According to Eq .{ lh  a nearly stationary distribution of droplets is 
realized after a long relaxation time. Remarkably, the size distribution 
peaks at R ~ R* and, once such a distribution is established, further time 
development of the droplet distribution becomes extremely slow. Min and 
Goldburg [9] found by gradually increasing dT from zero that the super- 
saturation tends to a finite value el[S) dependent on S. Here the super- 
saturation can be determined because the droplet volume fi'action is 
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4~=A(OI-AIS) .  Though such a state is nearly stationary, there is still a 
diffusive current onto each droplet from the surrounding metastable region. 
It will grow above R~ and break into smaller droplets, which will then start 
to grow again or dissolve into the metastable region depending on whether 
their radii are larger or smaller than R,.. Each droplet will also collide with 
another one on the time scale of I/S~ [5].  The evolution of the droplet 
distribution is therefore very complex and the observed quasistationarity is 
produced by a delicate balance among these processes. Alternatively, we 
may also start with an opaque state in which ,6T is sufficiently large and 
A(SI~-O [or  qS~d(0)].  Then, by gradually decreasing ~T at fixed S, a 
nearly stationary state will be obtained. Surprisingly, it has been found to 
be more opaque and has a larger droplet volume fi'action (or a smaller 
supersaturation) than in the reverse case of increasing (ST from zero [9] .  
Takebe et al. [6]  also found similar hysteresis in an off-critical ternary 
polymer solution by increasing or decreasing S with (ST fixed. There, 
however, the fluid is far from criticality and S is changed over very wide 
ranges. These steady states seem to be still slowly evolving, but it is not 
clear how the observed hysteresis depends on the waiting time at given (ST 
and S ( - 10 min in both experiments [8, 26]). 

4. S P I N O D A L  IN S H E A R  

So far we have assumed the very weak shear condition Sr <~ 1 in the 
off-critical case. However, if Sr is larger than A and ,~T is increased, meta- 
stability will be suppressed, because localized droplets larger than R* 
cannot be stable. In particular, if Sr > 1, the suppression is complete 
because R~ becomes of order ~, and instability of plane-wave fluctuations 
will occur as spinodal decomposition. Remarkably, the spinodal can be 
well defined as the onset point of phase separation, whereas T has no 
definite meaning in quiescent fluids. This explains a part of data by Takebe 
et al. [26] (a branch of decreasing S}. They decreased shear from very 
large values and detected a well-defined spinodal curve in strong shear. 
In the case Sr <1 the problem is delicate: however, we can well expect 
considerable enhancement of thermal fluctuations as (~T and hence the 
supersaturation are increased. We finally mention experiments by Russian 
groups [27, 28]. They detected a peak in the specific heat well inside the 
coexistence curve in stirred off-critical fluids, where the peak height 
increased with increase in the degree of stirring. They claimed that the 
spinodal point can be reached in the presence of stirring. We need more 
experiments to clarify these points. 
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5. C R I T I C A L  R H E O L O G Y  

In shear flow the fluctuations of  the order  pa ramete r  ¢ give rise to the 
following addit ional  shear stress [29] :  

Aa,,. = Sd,l = - k .  T ¢ ~ ~ (2) 

The fluctuation contr ibut ions to the normal  stress differences are written as 

. , , - n , ,  = k , , r  

a , . , -a : := / , - ,~T  \@z/  \~.x-~/ / 

(3) 

(4) 

In the one-phase region of near-critical fluids, the mode-coupl ing theory 
predicted that  Aq is nearly logari thmic as ln(~/~,) in weak shear and as 
ln(l/kc~.o) [30]  in strong shear. In the i: = 4 -  d expansion of renormaliza-  
tion group theory [31 ] we obtain slightly different forms• o'~,. z S [S[ ': 7/, 
and q ,~ [S[-':/v~' to first order  in l" in the s t rong-shear  case S t >  1. The 
normal  stress differences are propor t ional  to IS[ t ,:7,, because they are 
even functions of S. For  positive S the following ratios are universal in 
s trong shear: 

( a.,.~ - a , . . , . ) /a~. , .  = 0 . 0 4 6 / : [  1 + O(~: ) ] ( 5 ) 

(a.~.~ - a::)/a.,,. = 0.02&:[ 1 + O(~:)] (6) 

In the two-phase case. large," contributions arise from interface delbr- 
mations.  In part icular,  in weak shear, interfaces are sharp and Eqs. (2)-(4)  
yield a well-known expression [29, 32],  

d t l =  - 1 o" J" da , ,n, ,  (7) 

(8) 

where a is the surface tension, n = ( . , , . , . ,  n:) is the normal  unit vector, 
da is the surface element, and the surface integral is within a unit volume. 
Note  that Eqs. (7) and (8) are generally valid even for fluids far fi'om the 
critical point. The are the sole excess contr ibut ion in two-phase states if 
the viscosities of  the two phases are the same. If we suppose an assembly 
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of spheroidal droplets near the breakup condition, R - R * ,  we estimate 
( - n , n , .  ) ~ 1 and 

Ap l - q~a/SR - qSq (9) 

where q~ is the volume fraction. The normal stress differences behave as 

~,~ - ~ , . , -  o , ,  - a = =  - ISI 4"1 (10) 

In near-critical fluids these values are two orders of magnitude larger than 
those in the one-phase region given by Eqs. (5) and (6). Equations (9) and 
(10) were derived in Refs. 29 and 32. 

Krall et al. have confirmed Eq. (9) in a near-critical binary mixture 
[33].  There, however, Aq( t )  slowly decreased to 0 after t > 2 0 s  at the 
critical composition. They ascribed this decay to the fact that in their 
viscometer shear oscillates and damps in time and cannot stop coarsening 
after a certain decrease of the oscillating amplitude. Here I point out that 
in the string phase discussed in Section 2.2 the interfaces are mostly parallel 
to the flow and n, ~_ 0 in Eq. (7), leading to At/~ 0. In fact, in a very recent 
experiment by Hamano et al., ,Jq(t) decreased to zero very slowly after 
quenching in stationary shear [4] .  This should arise from reorganization of 
domains from random to elongated shapes. 

Takahashi et al. measured the first normal stress difference to confirm 
Eq. (10) in a viscous Newtonian polymer mixture in which the viscosity 
difference is small [35 ]. This is a marked effect because the normal stress 
differences are very small in the one-phase region and jump to large values 
after quenching. Note that the normal stress differences remain large even 
in the string phase, in contrast to the behavior of 3q. 

6. S P I N O D A L  D E C O M P O S I T I O N  IN BINARY MIXTURES WITH 
DIFFERENT VISCOSITIES 

In near-critical fluids the two phases have almost the same viscosity. 
However, the viscosity difference is not generally small far from the critical 
point and then the velocity fields in the two phases become asymmetric 
even for the same volume fraction of 50%. Thus the viscosity difference is 
a crucial factor determining the domain morphology as well as the volume 
fraction. In the following the viscosity and the volume fraction of the more 
viscous phase will be written as q~ and q~, respectively, and those of the 
less viscous phase as q2 and ck2=l-4~J,  respectively. Notice that the 
typical velocity gradients in the two phases, S~ and S_,, satisfy 

Ph Sl ~ vl2S2 ( 11 ) 
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from the shear stress balance at the interfaces. That is, the velocity gradients 
in the first phase are smaller than those in the second phase by the factor 
q,_hl~. This suggests that domains of the first phase tend to take closed 
shapes because those of the second phase are more easily deformed into 
extended shapes. 

We first suppose a bicontinuous case in spinodal decomposition 
without applied shear. Here the second phase is compressed and extended 
simultaneously, while the first phase takes more isotropic shapes. In par- 
ticular, in the limit q,_~qt,  the second phase forms thin layers enclosing 
the first phase. Let R t be the typical domain size of the first phase. Then, 
because the second phase is compressed into layers, the distance between 
two neighboring domains of the first phase is equal to the layer thickness 
and is characterized by a smaller length R2. The two lengths R t and R, are 
related to the volume fractions by 

ARt "~bl, A R , ~ 2  (12) 

where A is the surface area per unit volume. Here we note that the velocity 
fields in the two phases, St R~ and SzR  2, should both be of the order of the 
growth rate OR~/Ot of the domains of the first phase, 

c3 
SI RI ~ $2R2 ~ -~l Rt (13) 

From Eqs. (11) and (13) we obtain 

Rt/tlj -- R2/q2 (14) 

Furthermore, using Eq. (12), we find the following condition of bicon- 
tinuity: 

qSt/qt "" ga2/q2 (15) 

The less viscous phase has a smaller volume fraction in the bicontinuous 
case, as ought to be the case. The above relation has been known as an 
empirical law for polymer mixtures in the engineering literature [36]. On 
the other hand, the growth law may be obtained by assuming that the 
shear stress q~S~ ~q,_S2 given in Eq. (!1) is of the order of the surface 
tension foce density aiR t. It readily follows that 

(O/Ot)Rl~a/qt  or Rj ~(a/ t l l ) t  (16) 

which is a generalized McMaster-Siggia law for the case of different 
viscosities [37, 38]. 
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Next we apply a weak macroscopic shear to the system. The bicon- 
tinuity is realized in a wider parameter region than in the absence of 
macroscopic shear and high elongation of domains will be attained there as 
discussed in Section 2. We estimate the effective viscosity ~l~tr in such two- 
phase states. Note that we need not assume Eq. (15) and then Eqs. (13) 
and (14) are not necessarily correct, whereas Eqs. (11) and (12) remain 
valid. The macroscopic shear S is the following average of S. and $2: 

(Ri + R , _ ) S -  R I S  t + R,_S,_ (17) 

Using E q . ( l l ) ,  we find 

S ~ ~l Si + ~2S2 (18) 

The q¢,r is equal to S divided by the shear stress, so Eqs. (10) and (17) yield 
the desired result, 

I hl~tr - 4,, hl,  + ¢b,_/q,_ (19) 

When Ill ~ 112, this relation means that even a small fraction of the second 
phase can drastically reduce q~n. Obviously, the second phase acts as a 
lubricant. We note that the surface contribution, Eq. (7), to dq  has been 
neglected here, which is valid in the string phase. But in the transient 
process or in the droplet case, it holds that ( - n , n , . )  ~ 1: then, the surface 
contribution 311 is of order a A / S  ~ aq~t/Rt S. 

Very recently the theology in two-phase states with viscosity difference 
has been studied theoretically [39]. The normal stress differences are 
predicted to be still proportional to ISI, but have a maximum around the 
bicontinuity condition as a function of the volume fraction. 

7. SUMMARY 

Although our examples treated here constitute only a fraction of those 
in the literature, they nevertheless show that the effects of shear are very 
diverse and sometimes even spectacular. This paper succeeds a recent short 
review paper by the present author [40],  both shedding light on a facet of 
the unique problem of shear in condensed matter physics. 
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